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Abstract
To facilitate genetic mapping of developmental mutants of Physcomitrium patens, we produced a genetic marker that
combines recessive auxotrophy with dominant positive selection. We first identified the gene affected by the pabB4
auxotrophic mutation and then replaced it with a cassette that confers antibiotic resistance. This strain may be used to produce
bi-parental somatic hybrids with nearly any other strain.

Figure 1: (A) Diagram of the Pp3c26_2070 locus encoding the ADCS enzyme and the gene-replacement construct. Coding
regions are indicated by filled boxes, untranslated regions by unfilled boxes, and introns by bent lines. Regions encoding the
glutaminase and synthase domains are shown in blue and green, respectively. The position of the pabB4 mutation is indicated
(coordinates from v3.0 genome assembly, Lang et al. 2018). In the ∆adcs::mScarlet knockouts lines, the coding region is
replaced with DNA encoding a nuclear-localized mScarlet fluorescent protein and a 35S:aacC1 gene cassette to confer
resistance to gentamicin flanked by loxP sites (orange triangles). The pink triangles indicate the positions targeted by the two
CRISPR guide RNAs. (B) SspI-digested PCR products amplified from the pabB4 mutant and Gransden WT. The mutation
creates an additional cut site within a 343 base pair fragment resulting in 285 and 59 bp fragments. (C) Amino-acid alignment
of a region in the glutaminase domain from plant, fungal, and bacterial sequences. A red arrow indicates Serine-302 and red
bars indicate the histidine and glutamic acid active-site residues (D–F) Growth of strains on different media for 21 days:
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BCDAT minimal medium (D), BCDAT medium supplemented with 3 µM PABA (E), and BCDAT medium supplemented with
3 µM PABA and 50 µg/ml gentamicin (F). The ∆adcs::mScarlet knockout lines (#10, 14, and 16), pabB4, and WT (Reute) are
as labeled. (G–H) Confocal micrographs showing mScarlet fluorescence in the top panels and merged images of mScarlet
(magenta), chlorophyll A (green), and calcofluor-white (blue) in the lower panels for the ∆adcs::mScarlet#10 line (G) and
Reute WT (H).

Description
The haploid-dominant life cycle of mosses poses a challenge to genetically mapping infertile mutants. Recently, a method to
circumvent these difficulties was developed that uses protoplast fusion of mutant and wild-type protoplasts to produce fertile
somatic hybrids that produce segregating sporelings upon selfing (Moody et al. 2018). All known methods for producing
somatic hybrids require the parent strains to either have complementing auxotrophic mutations or distinct antibiotic resistances
(Grimsley et al. 1977; Cove et al. 2009b). Here we describe a strain that could be used as a universal fusion partner for
mutants that contain neither type of marker, one that combines recessive auxotrophy with dominant antibiotic resistance.

Among the most commonly used auxotrophic mutants of the moss Physcomitrium patens (Hedw.) Mitt. (previously
Physcomitrella patens) are those that require p-Aminobenzoate (PABA) for growth and which fall into two complementation
groups, pabA and pabB (Ashton and Cove 1977; Grimsley et al. 1977; Ashton et al. 1979). PABA, along with pterin and
glutamate moieties, is essential in the production of folates (Vitamin B9) which, in turn, are essential cofactors for one-carbon
transfer reactions in the synthesis of various compounds such as methionine, purines, and thymidylates (reviewed in Hanson
and Roje 2001). PABA is synthesized from chorismate and glutamine in three steps. The first two steps, glutamine hydrolysis
and adding the resulting amino group to chorismate, are catalyzed by the Aminodeoxychorismate Synthase (ADCS) enzyme
comprised of a single bifunctional protein in most plants and fungi and by separate glutaminase and synthase subunits in most
bacteria (Basset et al. 2004a). (Note that the P. patens pabA and pabB complementation groups were named independently
from the bacterial PabA and PabB enzyme subunits.) The 4-amino-4-deoxychorismate (ADC) product is converted to PABA
by the ADC Lyase enzyme (Basset et al. 2004b).

In P. patens, ADCS is encoded by a single gene, Pp3c26_2070, whereas three genes (Pp3c2_23040, Pp3c4_31240, and
Pp3c7_15160) appear to encode ADC lyase enzymes. We sequenced the Pp3c26_2070 locus from the pabB4 mutant and
found a single mutation in the seventh exon that results in an asparagine substitution at a highly conserved serine residue
(S302N) in the glutaminase domain immediately adjacent to the His-299 and Glu-301 active site residues and also creates an
SspI restriction site (Fig. 1A–C). The corresponding serine in the bacterial glutaminase subunit was shown to form two critical
hydrogen-bonds that link an Asp residue of the synthase subunit to a Thr residue of the glutaminase subunit; interactions
between these three residues mediate the allosteric stimulation of glutaminase activity by chorismite binding to the synthase
subunit (Semmelmann et al. 2019). Interestingly, the Asp residue is conserved in plant ADCS enzymes, but the Thr is not. It is
not currently known whether chorismate binding also stimulates glutaminase activity in plant ADCS enzymes.

To confirm that Pp3c26_2070 is required for PABA synthesis, we replaced its coding region in a wild-type strain’s genome
with a cassette conferring resistance to gentamicin and a nuclear-localized mScarlet fluorescent-protein gene using
CRISPR/Cas9-facilitated targeted gene replacement (Fig. 1A). Sixty-seven of seventy-two stable transformants assayed grew
only on media supplemented with PABA, and three lines with clean gene replacements were selected based on PCR
genotyping (∆adcs::mScarlet; Fig. 1D–1F). By comparison, the non-null pabB4 mutant grew very slowly without added
PABA (Fig. 1D and 1E). Weak fluorescent signal from mScarlet could be detected above background chloroplast-derived
autofluorescence (Fig. 1G versus 1H).

The ∆adcs::mScarlet mutant is potentially a useful genetic tool. It was designed to extend the mutant mapping system
developed by Moody et al. (2018) to mutants whose background lack an antibiotic resistance that could be selected. After
fusion with ∆adcs::mScarlet, only bi-parental hybrids would be able to grow on minimal media supplemented with gentamicin
—the mutant’s genome would provide a functional ADCS gene and ∆adcs::mScarlet’s genome would confer gentamicin-
resistance. Such a universal hybridization partner might also allow production of allopolyploid lines through fusion with
protoplasts from other moss species, most of which lack established transformation protocols. Auxotrophic mutants may also
prove essential in the development of stably maintained shuttle vectors in moss. Unlike other plants, P. patens can maintain
plasmid DNA extrachromosomally as long as selection is applied (Ashton et al. 2000; Murén et al. 2009). Vectors that
complement auxotrophic mutations may be superior to those that confer antibiotic resistance because selection can be
maintained even in cells not in direct contact with the substrate (Ulfstedt et al. 2017).

Methods
Request a detailed protocol
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Moss propagation and transformation were carried out as described previously (Cove et al. 2009a; Cove et al. 2009c). The
Pp3c26_2070 gene was amplified and sequenced in four segments using the indicated primers (Primer Table) from the pabB4
mutant (kindly provided by Neil Ashton, University of Regina). To confirm that the G-to-A mutation in the seventh exon was
unique to the pabB4 genome, the region including the mutation was amplified from pabB4 (Gransden background) and the
‘Gransden 2004’ wild type and digested with SspI. The SspI site created by the G-to-A mutation was only present in the pabB4
product.

The ∆adcs::mScarlet construct, pMP1907, was created by ligating in SpeI–SwaI and SphI–SalI fragments with the
downstream and upstream homology arms, respectively, into the pMP1119 vector. pMP1119 was created from pBNRF
(Thelander et al. 2007) by 1) digestion with BglII and NotI followed by polishing with T4 DNA polymerase and re-ligation, 2)
removal of the 35S:nptII transgene by EcoRI digestion and re-ligation, and 3) insertion of the 35S:aacC1 transgene as a KpnI–
SacI fragment after amplifying from pYL-TAP-Nt (Rubio et al. 2005). The Pisum rbcS-E9 terminator sequence was inserted
as a KpnI fragment upstream from the 35S:aacC1 transgene. NLS-mScarlet (Bindels et al. 2017) was amplified and subcloned
into pCR Blunt (ThermoFisher) then inserted as an EcoRI fragment into the MfeI site. The plasmid to express SpCas9 and
guide RNAs designed to target near the start- and stop codons (pMP1957) was generated using oligos and pMK-Cas9-gate
according to published protocols (Mallett et al. 2019). Fifteen µg of both pMP1907 and pMP1957 plasmids were transformed
into the Reute 2016 strain (Hiss et al. 2017). After regeneration on PRMB medium containing 3 µM PABA, four-day-old
transformed protoplasts were selected on BCDAT medium containing 3 µM PABA, 100 mg/l gentamicin, and 20 mg/l G418
for one week. Transformants were picked to BCDAT+PABA medium, then 10 days later a small clump of each was transferred
to BCDAT+PABA+gentamicin medium to identify stable transformants. We later discovered that expression of aacC1 confers
resistance to both gentamicin and G418 (but not to 100 mg/l kanamycin), however the high rate of stable integration likely
reflects the high rate of co-transformation despite no selection for pMP1957 uptake. The presence of proper 5′ and 3′
integration products and the absence of SpCas9 and ADCS genes were confirmed by PCR (Primer Table).

mScarlet, calcofluor-white, and chlorophyll fluorescent signals were imaged using a Zeiss LSM 880 microscope using 561,
405, and 633 nm excitation and 580–605, 410–501, and 647–721 nm detection windows, respectively.

Reagents
Primer Table

Name Sequence (5′ to 3′) Purpose

P35S-KpnF atcggtaccAACATGGTGGAGCACGAC Subcloning
35S:aacC1

T35S-SacR tcggagctcCTGGATTTTGGTTTTAGGAATTAGA Subcloning
35S:aacC1

SV40FP-
XbaF tctagaATGGCTCCAAAGAAGAAGAGAAAGGTCGCTGTGAGCAAGGGCGAGGA Subcloning NLS-

mScarlet

mCherry-
xbaR tactctagaTTACTTGTACAGCTCGTCCATGC Subcloning NLS-

mScarlet

Te9-KpnF TCCggtaccGTTCGAGTATTATGGCATTGGG Subcloning rbcS-E9

Te9-KpnR GTTgGtACcATTGGCAAGTCATAAAATGCATT Subcloning rbcS-E9

ADCS5-
SphF CAAgcATGCTTTTTTTCAAAGCAAATTTG Subcloning 5′

targetting arm

ADCS5-
SalR TGCgtCGACCTCAAGCTCCATTTTCAGACC Subcloning 5′

targetting arm

ADCS-
3SpeF GAAacTAGTGTGGCTTTACCTTAGTCTCCTC Subcloning 3′

targetting arm

ADCS-3R AACACCTTCACTTATATGCCTCCA Subcloning 3′
targetting arm

ADCS-5-crF ccatGCACCTGGAGATGACTCAGA CRISPR protospacer

ADCS-5-crR aaacTCTGAGTCATCTCCAGGTGC CRISPR protospacer
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ADCS-3-crF ccatACACCACCTCCAGCAGTCAA CRISPR protospacer

ADCS-3-crR aaacTTGACTGCTGGAGGTGGTGT CRISPR protospacer

ADCS-5uF GGTCTGAAAATGGAGCTTGAGGT Sequencing

ADCS-4iR AGGAGAAGAAGGAGCAAAGCAGA Sequencing

ADCS-4iF CGGTCGTTTAAGGTATAATTTCTCCA Sequencing, pabB4
genotyping

ADCS-8eR ATCAGAACATGGCTTGAATCGTC Sequencing, pabB4
genotyping

ADCS-8eF GATCTTACGAAGTGCCTGCATGA Sequencing

ADCS-12eR TAGAGAGCCATTCGACTTGGAAAC Sequencing

ADCS-12eF ATTCGTTTAATCACGGCCAGAAC Sequencing

ADCS-3uR ATCCCCTGATGGAACTACGTGAA Sequencing

Ubi-tataF2 CGATGCTCACCCTGTTGTTTGG ∆adcs genotyping
(Cas9)

Cas9-R TTGATCATGGAGGCGGAGAGTG ∆adcs genotyping
(Cas9)

ADCS-
genoF GGATAGAGCCCCACAAAGCCA ∆adcs genotyping

(5′)

NLS-genoR ACCTTTCTCTTCTTCTTTGGAGCCA ∆adcs genotyping
(5′)

Tcamv-
genoF CCTATAGGGTTTCGCTCATGTGTTG ∆adcs genotyping

(3′)

ADCS-
genoR CCAATAAGTCCTACCAAATAAACGCCT ∆adcs genotyping

(5′)

ADCS-e6F ATGCTCCTGGGGTTGATTGCT ∆adcs genotyping
(WT)

ADCS-e11R CACAAAAGTGGAAGGGCAGGC ∆adcs genotyping
(WT)

Acknowledgments: We thank Neil Ashton for providing the pabB4 mutant and for discussions about PABA-requiring
mutants.
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